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Abstract. Attention mechanisms of biological vision have been applied to ma-
chine vision for several applications, like visual search and object detection. 
Most of the proposed models are centred on a unique way of attention, mainly 
stimulus-driven or bottom-up attention. We propose a visual attention system 
that integrates several attentional behaviours. To get a real-time implementa-
tion, we have designed a distributed architecture that exhibits an efficient and 
flexible structure. We describe some implementation details and real experi-
ments performed in a mobile robot endowed with a stereo vision head. 

1 Introduction 

The visual attention system in a mobile robot acts as a dynamical device that inter-
acts with the environment to select what might be relevant to current active tasks. At 
the same time, it should maintain responsiveness to unforeseen events. More specifi-
cally, it should enclose the following functions [12]: selection of a region of interest 
in the visual field; selection of feature dimensions and values of interest; control of 
information flowing through the visual system; and shifting from one selected region 
to the next in time or the “where to look next” task. 

Attention can be classified according to various aspects. In psychology, the terms 
generally used are active (voluntary) and passive (involuntary) attention [3]. From a 
stimulus point of view, there is overt or covert attention depending on the way the 
stimulus is attended [10]. Overt attention is the act of directing our eyes towards a 
stimulus source. Covert attention is the act of mentally focusing on a particular stimu-
lus without any motor action. Attending to the mechanism that drives attentional 
control, there are two kinds of execution methods: one is bottom-up or stimulus-
driven, which shift attention to regions with visual features of potential importance; 
another is top-down or goal-directed, which use knowledge of the visual features of 
the desired target to bias the search process. 

In recent years, visual attention has taken an important place in robotic research. 
Most of the proposed models have focused on pure bottom-up [2][12] and some on 
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top-down [9] attention. There have been some efforts on combining both forms of 
attention by weighting bottom-up saliency maps with top-down information [8,11]. 

The approach proposed in this paper is mainly characterized by the integration of 
different attention categories at a single system endowed with a flexible and adapt-
able architecture. The proposed system is modelled as a collection of processes col-
laborating to fix a visual target and to choose the next one. The complexity of the 
resulting global system requires the use of distributed software engineering tech-
niques. We use the Internet Communication Engine (Ice) middleware platform [1] 
and a custom component model specifically tailored to build distributed vision archi-
tectures. 

2 Architecture of the proposed system 

The visual attention system proposed in this paper integrates several ways of attention 
to work successfully at different situations. It has been design and tested on a mobile 
robot with a stereo vision head. The net of processes that compose the system are a 
set of Ice components collaborating to fix a visual target. As shown in Figure 1, the 
elements in the architecture are roughly organized in two branches that converge in 
the lower part of the graph. From this point a closed-loop connection feeds back to 
the upper initial part.  The two branches divide the visual function in an analogous of 
the “what” and “where” pathways proposed in neuroscience [7]. This division allows 
for a specialization of functions dedicating specific resources to each branch and 
sharing what is common from lower-level processes. The “what” branch tries to find 
and track a specific target in the image using bottom-up computed ROI's and top-
down specification of targets. The “where” branch extracts geometric information 
from stabilized ROI's  and selects those regions that meet certain requirements, such 
us being on the floor plane, being too close or being in the current heading direction. 
The information from both branches has to be integrated solving an action selection 
problem.  Given a current task or set of tasks, where to look next? This is accom-
plished by the lower component in the graph which outputs commands to the underly-
ing motor system. In our system “looking to something” implies a 3D positioning of 
the robot with respect to the target, which we call a 3D saccadic movement. Follow-
ing this reasoning, solving a generic navigation task such as going some-where fol-
lowing a predetermined set of (remembered) landmarks, amounts to generating the 
“correct” set of saccadic movements that will approach the current target while avoid-
ing potential obstacles. This set cannot be computed a priori as long as it is the result 
of extended dynamical interactions between the robot and its environment.  It is par-
tially defined in the programmed code and partially selected from finding out how is 
the outside world. The whole system works as a complex mechanical device that is 
attracted towards some features and rejected from others. The specific interleaving 
between approaching and avoiding is given by an implicit time relation that links 
internal parameters and external geometry. 

 



 
Fig. 1. Architecture of the visual attention system. 

3 Components and connections 

Each component in the architecture is a C++ coded unix process using the Ice mid-
dleware. Similar to CORBA, each component supplies a public interface that can be 
used by other participants to call its methods remotely. We now describe the compo-
nents depicted in Figure 1 and its connections: 
• Visual processor (VP): Acts as a vision server capturing images from the cameras 

and computing Harris-Lapace regions of interest at multiple spatial scales as de-
scribed in Lowe[4]. For each set of ROI's it fills a shared double buffer to supply 
quick responses to client requests. 

• Head controller (HC): Head motor controller. Computes direct and inverse kine-
matics of the binocular head. It waits for client commands and passes them to a 
dedicated microcontroller that executes the PID loops. It keeps a copy of the state 
of the motors and of the head and can answer queries about them directly. 

• Base controller (BC): Base motor controller. Computes direct and inverse base 
kinematics and waits for client commands that are passed to a dedicated micro-
controller that executes the PID loops. It keeps a copy of the state of the motors 
and of the mobile base and can answer queries about them directly. 

• Vergence controller (VC): Works independently to ensure the convergence of 
both cameras to the same spatial point. Vergence control is done by a multi scale 
cross correlation between the centre of the dominant camera and the epipolar   ho-
mologous window in the other one. It looks for the maximum of the resulting 
structure (maximum of the image window at the whole scale-space) and performs 
the shift that leads to the convergence of both cameras. To optimize resources the 



search is done in an increasingly wider window triggered by a failure in the direct 
matching of foveas. Vergence controller is a client of VP and HC.  

• ROI Maintenance component (RC): Maintains a stable representation in time of 
recently perceived regions of interest. It provides a map of regions built in the 
camera reference system. It works as a short-term memory maintaining informa-
tion about each region such us: raw image window, permanence time, attention 
time and update time. As VP does, this component always maintains an available 
ROI list that can be sent to its clients on demand. 

• Categorization component (CC): Classifies regions of interest into known cate-
gories that can be used as landmarks. The current implementation uses euclidian 
distance to compare SIFT[5] and RIFT[6] descriptors of candidate ROI's with pre-
viously stored examples. It accepts a target category so it tries to find a region 
compatible with the target and returns a list of candidates.   

• Spatial component (SC): Compute spatial and geometric features of the last re-
ceived ROI list and organize them in a head reference system. Properties computed 
by this component are 3D position of the region using vergence from VC and dis-
parity with intrinsic and extrinsic parameters from VC and HC respectively and 
planarity and plane orientation of the overall region by estimating the best homo-
graphy. More useful properties will be implemented in near future to determine lo-
cal shape with greater precision so more sophisticated hierarchical categorization 
can be accomplished in collaboration with CC. 

• Target selectors (TS): Integrates local representations from CC and SC according 
to some criteria. CC provides a list of classified regions that are integrated with 
spatial information from SC to construct a final saliency map. This map is used to 
select a focus of attention that can be sent to the attention controller. This last ac-
tion only takes place when the component is active. TS are specialized on a spe-
cific action. They are in communication with other components outside the atten-
tion system that activate them to take the attention control in order to carry out an 
action. An example of target selector component is the landmark selector, which is 
linked to a follow-landmark action. Another one is the obstacle selector, related to 
an action of avoiding-obstacles. The attention-action relationship is not a manda-
tory condition. A target selector can be linked to an idle behaviour that allows the 
system to maintain a pure bottom-up attention. 

• Attention controller (AC): Receives the location of a region from the active TS 
and maintains the focus of attention on such region until another position is re-
ceived. To achieve this goal the AC implements a predictive tracking algorithm 
that combines the distance among RIFT descriptors of the regions and normalized 
correlation in YRGB space. 

4 Interaction dynamics 

The architecture just described provides an attentional mechanism that can be incor-
porated in a wider network of components adding behaviour-based control, task se-
lection, planning, topological maps and other abilities. In the experiment shown here, 
we use a couple of coordinating behaviours -approach and avoid- that activate the 



target selectors (TS's) of the attentional system. Together, they can be seen as a vis-
ual-goto-point (VGP) compound behaviour which is the basic serializing constituent 
of most complex navigation tasks. The attentional mechanism provided to VGP en-
dows it with inner dynamic loops that take care of target detection, recognition, 
searching and tracking, lost target recovery and unexpected obstacle detection. In 
addition, these features are the result of parallel activities that get serialized to gain 
access to the orientable cameras and, therefore, to localized information outside. 

When VGP activates, two activities take place simultaneously: a target landmark is 
downloaded to the attentional system through a TS, and another TS is activated to 
detect potential obstacles in front of the robot. Both TS's are coordinated in a very 
basic way by the VGP to achieve the current goal. The law to follow is hierarchical: 
“if there is free way, approach the target”.  First, the landmark TS activates to search 
the target. Once it is fixated, the obstacle TS activates to locate potential hazards in 
the course towards the detected landmark. If the near space is free of obstacles, the 
cameras will search again the landmark and the base of the robot will reorient to-
wards the gaze direction and start moving forward. Then again, the obstacle TS will 
use its short term spatial memory representation and covert attention capabilities to 
gaze towards any close enough obstacle in the way. If it happens, the base will reori-
ent in a direction perpendicular to the pan angle in order to avoid the nearest obstacle. 
Once the danger is over, the landmark TS will regain control to relocate the target and 
establish a new heading direction. This alternating dynamics keeps going on until the 
goal landmark is within some specified distance and orientation. 

Several kinds of attention can be observed in the last example. When the obstacle 
TS chooses a target to attend to, it performs overt attention on the obstacle so avoid-
ing based on pan angle can take place. But when the landmark TS is waiting, it per-
forms covert attention on the target so it can be quickly fixated again when it gets 
activated. In a similar way, we can speak about bottom-up and top-down attention. 
ROI's detected by the VP drive attention in a bottom-up way selecting those areas of 
the image most informative. From this set, a few are chosen attending to task de-
pendent constraints such as target landmark or specific known geometric properties of 
obstacles. 

5 Experiments 

The visual attention system has been tested in a threaded mobile robot endowed with 
a stereo vision head. It encloses five degrees of freedom with digital PID controlled 
servos and two ISight Firewire cameras (Fig 2). This type of robots has been devel-
oped in our Laboratory and is widely used in prototyping and algorithm testing. 

The architecture of components just described runs on a local cluster of computers. 
Each process is an independent C++ application, which includes Ice objects and prox-
ies to communicate with other processes. An Ice object is an entity used by a server to 
respond to client requests. An Ice proxy represents an Ice object local to the client 
that can communicate remotely to the server. Ice provides a remote method invoca-
tion capability that can use both TCP and UDP as the underlying protocol.  In our 
current implementation the network of processes is distributed among four physical 



processors – dual Opteron board for VC, HC and BC, 3Gh-HT P4 for VC and RM, 
and AMD64 dual core for CC, SC and AC- and six cores as seen by the Linux operat-
ing systems. The computers are locally linked by a Gb ethernet switch providing 
enough bandwidth for real time communication among components. 

 

 
Fig. 2. Robot used in the experiments 

 
We have designed a simple experiment for initial testing and validation of the pro-

posed architecture. The robot has to localize and approach a landmark (star) in its 
near space avoiding an obstacle that blocks its heading direction. The running system 
incorporates all the components described before. As target selectors (TS's) we use 
landmark and obstacle selectors working in cooperation. Actions linked to selectors 
are approach and avoid, configuring a sort of visual goto-point. 
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Fig. 3. Experiment of navigation avoiding obstacles 

Changes of attention alternating these two kinds of targets can be appreciated in 
the sequence above (figure 3). Initially, a) attention is fixated on the landmark and an 
action of approaching begins. Then, b) and c) frames, obstacles gain control of atten-
tion guiding the robot to avoid them. After several frames - d) - landmark is fixated 



again providing a new goal heading.  To keep up with the new situation the obstacle 
selector changes its focus of attention, e) and f). Once all the obstacles have been 
avoided g), attention is again centred on the landmark making the robot to approach it 
and finally reach the goal position, j). 

6 Summary and conclusions 

In this paper we have shown an experiment in distributed visual attention on a mo-
bile robot with a stereoscopic head. Our goal has been to test the potential of combin-
ing ideas from visual neuroscience, distributed software engineering and robotics. We 
think that the proposed architecture will ease the way to model and implement more 
perceptual and cognitive capabilities in our robots. This first result shows that the 
complexity of distributed attention can be integrated in a visual navigation framework 
to solve what we have called the visual-goto-point problem. Much work remains in 
this multidisciplinary area, but the possibilities offered by new multicore processors 
in conjunction with communications middleware will open new spaces for bi-inspired 
robotics modelling and building. 
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